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Abstract

A spectral element method using Jacobi polynomial bases is employed to study the vortex-induced oscillations of two

identical elastically mounted cylinders in tandem arrangement. Three different cylinder spacings, P=D ¼ 2:5, 3.5 and

5.0, are examined in order to identify the effect of spacing on the two-degree-of-freedom oscillations of the cylinders.

Computations were conducted in two space dimensions (2-D)—an assumption that is expected to be valid for the

Reynolds number, Re ¼ 160, considered. The single cylinder case is also examined at the same flow and structural

parameters for reference and comparison. A widening of the range of the response region of the upstream cylinder is

observed when the cylinder spacing is decreased. The synchronization curves of the upstream cylinder display a shift on

the reduced velocity (VR) axis depending on the spacing. The maximum oscillation amplitude of the downstream

cylinder increases when the cylinders are brought to a distance that the flow around the corresponding stationary

system displays reattachment. There are three significant frequencies at the spectral responses: the shedding frequency

of the stationary tandem system (f ��o ); the shedding frequency of a single cylinder (f �o); and the natural frequency of the

mass-spring system describing the dynamics of the cylinders (f N ). The energy input of the flow on each cylinder is

studied in terms of the line integral of the hydrodynamic force yielding the work, the phase angle between force and

displacement at the prominent spectral frequency, and finally the lift in phase with velocity.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow-induced oscillations of bluff bodies are a subject that has attracted a lot of attention because of its interesting

fluid dynamics aspects, as well as for its engineering applications. The flow past an oscillating cylinder has been studied

by various researchers in the past. Classic review papers on the topic are those of Sarpkaya (1979) and Bearman (1984).

Useful resources on the subject are also the books by Blevins (1994) and Naudascher and Rockwell (2005). A cylinder in

uniform cross flow exhibits large amplitude oscillations when the natural frequency of cylinder vibration (f N ) is close to

the vortex-shedding frequency of the stationary cylinder. The cylinder then sheds vortices at that frequency and the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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condition is called ‘lock-in’. The interaction of two cylinders arises in many engineering applications, including arrays

of offshore risers and moorings, power transmission lines, suspension bridges and heat exchangers.

A number of distinct flow regimes exist depending on the separation distance and arrangement (Zdravkovich, 1987;

Igarashi, 1981). For stationary cylinders in tandem arrangement, there are three main flow regimes but a further sub-

categorization is possible. In very close proximity, the two cylinders behave as a single body. The shear layers

emanating from the upstream cylinder roll-up after the downstream, forming a single wake. Increasing the cylinder

spacing causes the shear layers emanating from the upstream cylinder to reattach on the downstream cylinder. The

time-averaged force on the downstream cylinder has a component opposite to the free stream, and the shedding

frequency reduces. When the cylinder spacing is increased beyond a critical spacing, vortex shedding occurs in the gap

region between the two cylinders. The wake behind the cylinders consists of the combined wakes of the two cylinders

and this regime is called binary-vortex regime.

Zdravkovich (1985) studied the flow-induced oscillations of two interfering, rigid, elastically supported circular

cylinders for Reynolds numbers in the range 104–105. Two mechanisms of excitation were discussed: Vortex-shedding

excitation and fluid-elastic excitation. The obtained data show that the synchronization range decreases as the cylinder

separation increases. The critical velocity is considerably bigger in the reattachment regime compared to the binary-

vortex regime cases. The reduced velocities triggering fluid-elastic excitation were significantly bigger than those

triggering vortex-shedding excitation.

Laneville and Brika (1997) conducted experimental studies on the power imparted by wind to a flexible circular cylinder

vibrating in the wake of a fixed upstream cylinder for different cylinder arrangements and spacings. The power input on the

downstream cylinder decreased with increasing cylinder separation. Brika and Laneville (1999) have also investigated

experimentally the dynamic response of a long flexible circular cylinder in the wake of a stationary geometrically similar

cylinder at a low damping ratio. The separations they investigated range from 7 to 25 diameters and the Reynolds

number ranged from 5000 to 27 000. For the tandem cylinders, their results indicated that: (a) the dynamic response of

the downstream cylinder is no longer hysteretic, (b) the synchronization onset is at higher reduced velocities and (c) the

synchronization region is wider than that of an isolated cylinder. For separation distances of 7 and 8.5 diameters, they

found that the leeward cylinder exhibits a combination of vortex-induced and wake-galloping oscillations.

Hover and Triantafyllou (2001) studied the galloping response of a cylinder in the wake of a stationary cylinder of the

same size. The cylinder was placed at a distance 4.75 diameters, both in-line and in 121 staggered arrangement at

Re ¼ 3� 104. The results indicated that frequency lock-in occurs at a low reduced velocity and remains through

Vrn ¼ 17, but the phase change, which typically accompanies frequency lock-in, occurs at higher speeds. This phase

change was claimed to be of the same nature as for single-cylinder tests.

Mittal and Kumar (2001) employed a stabilized finite-element formulation to study flow-induced oscillations of two

cylinders in tandem and staggered arrangements for Re ¼ 100. In both arrangements the horizontal distance of the

cylinders was 5.5 times the diameter. In almost all the cases, the upstream cylinder responded like an isolated single

cylinder. Soft lock-in was observed in many cases. The vortex-shedding frequency of the cylinders was detuned from the

structural frequency. They attributed the detuning to the relatively low mass ratio of each of the two cylinders which

was m� ¼ 4:7273. They argued that as the mass of the oscillator increases, the detuning between the two frequencies

reduces until eventually lock-in is observed. The structural damping coefficient they used was z ¼ 3:3� 10�4.

Allen and Henning (2003) conducted current tank tests to study vortex-induced vibrations on two tandem cylinders

in uniform as well as in shear flow at subcritical Reynolds numbers. They reported that, when the separation distance

was sufficiently large, the downstream cylinder vibration exhibited frequencies at both the vibration frequency of the

upstream cylinder and at a second, lower frequency equal to about 60–75% of the first.

Lam and To (2003) investigated experimentally the interference effect of a cylinder placed upstream of a smaller,

flexibly mounted circular cylinder. Vibration response curves of the smaller cylinder were obtained at 64 relative

arrangement positions of the two cylinders, including tandem, side-by-side, proximity, and staggered arrangements. For

the tandem arrangements they found that for spacings up to 2.34 times the larger diameter, the flexible cylinder exhibits

negligibly small oscillations at all reduced velocities, due to shielding by the larger cylinder upstream. For relatively

large spacings, some obvious vibrations were found to occur at reduced velocity VR ¼ 12.

Assi et al. (2006) have recently presented an experimental study on the flow-induced oscillations of circular cylinders

in tandem arrangement. The oscillations were limited to the transverse direction, but with quite low damping parameter

z ¼ 0:008–0.0109. The Reynolds number of their experiments ranged between 3000 and 13 000 and reduced velocity

varied up to 12. The center-to-center spacings they examined ranged between 2 and 5.6 diameters and the mass ratios

m� between 1 and 2.

In the present work, we study numerically the effect of spacing on the vortex-induced vibrations of two tandem

cylinders. Three spacings are selected, P=D ¼ 2:5, 3.5 and 5.0. Fig. 1 shows instantaneous vorticity visualization of the

flow around the stationary tandem system at each spacing, as well as the stationary single cylinder. The first spacing
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Fig. 1. Instantaneous visualization of flow around stationary cylinders. From top to bottom: tandem cases P=D ¼ 2:5, 3.5, and 5.0;

and single cylinder.
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ðP=D ¼ 2:5Þ belongs to the reattachment regime in the non-oscillating system. The last ðP=D ¼ 5:0Þ leads the

corresponding stationary system to binary-vortex shedding. Finally, the spacing P=D ¼ 3:5 is very close to the critical

spacing of transition from reattachment to binary-vortex regime. In fact, due to a known hysteresis effect, this spacing is

capable of sustaining flow with vortex shedding in the gap region, once such situation was somehow initiated. For more

information on the hysteresis effect, the reader can refer to the original experimental work of Zdravkovich (1987), the

numerical findings of Papaioannou (2003) and Jester and Kallinderis (2003). The single cylinder case is studied for the

same structural parameters and Reynolds number for reference and comparison.

The paper is organized as follows. In Section 2, we outline the formulation and numerical procedure of the solution.

The computational mesh and the simulation parameters are also described. In Section 3, we elaborate on the two-

degree-of-freedom vortex-induced vibrations of the tandem cylinders. Transverse and in-line oscillation amplitudes,

forces as well as dominant response frequencies are discussed. Hydrodynamic work is also analyzed and flow patterns

are displayed. The conclusions and summary of the work are presented in Section 4.
2. Method and formulation

2.1. Flow formulation

An arbitrary Lagrangian–Eulerian (ALE) formulation of the incompressible Navier–Stokes equations is employed,

as proposed by Hughes et al. (1981) and Donea et al. (1982). The mesh velocity will be denoted by v̂ and is a field
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variable. The equations describing the flow on a moving domain of reference (x̂) can be written as

ui;t þ ðuj � v̂jÞui;j ¼ �p�;i þRe�1ui;jj , (1)

subject to the incompressibility condition,

ui;i ¼ 0. (2)

The method of spectral elements on hybrid unstructured meshes, as explained in Karniadakis and Sherwin (2005), is

employed for the spatial approximation of the solution.

For the time integration of Eqs. (1) and (2), the stiffly stable integration scheme of Karniadakis et al. (1991) is used

suitably adapted for the staggered integration of the structure and flow domain equations, as follows.
(i)
Table

Coeffi

Coeffi

a0
a1
a2
g0
b0
b1
b2
The position of the mesh nodes is updated taking into account the previously calculated mesh velocities (v̂i)

g0x̂ðnþ1Þ �
PJi�1

q¼0 aqx̂
ðn�qÞ
i

Dt
¼
XJe�1

q¼0

bqv̂
ðn�qÞ
i , (3)

where the values of aq, bq, and g0 can be found in Table 1.
(ii)
 The nonlinear terms are calculated and integrated to get

u
nþ1=3
i �

PJi�1
q¼0 aqu

n�q
i

Dt
¼
XJe�1

q¼0

bq½ðuj � v̂jÞui;j �
n�q, (4)

obtaining the first (u
ðnþ1=3Þ
i ) of the three updates of the velocity field of the fractional step scheme.
(iii)
 Incompressibility is enforced in the next sub-step

u
ðnþ2=3Þ
i � u

ðnþ1=3Þ
i

Dt
¼ �p

�ðnþ1=2Þ
;i ; u

ðnþ2=3Þ
i;i ¼ 0. (5,6)

Applying the gradient on (5) and enforcing (6), a Poisson equation for the pressure is obtained

p
�ðnþ1=2Þ
;ii ¼

u
ðnþ1=3Þ
i;i

Dt
. (7)

For the solution of (7) a modified version of the pressure boundary conditions suggested in Karniadakis et al.

(1991) is employed

p�;ini ¼ ni

XJe�1

q¼0

bqðNðui; v̂iÞ
ðn�qÞ
þRe�1LðuiÞ

ðn�qÞ
Þ þ €qðn�qÞ

i

" #
, (8)

where Nðui; v̂iÞ ¼ ðuj � v̂jÞui;j are the nonlinear terms in the ALE formulation, LðuiÞ ¼ �ijk�klmum;lj is the Laplacian

operator of the viscous terms, and €qi the acceleration of the cylinder in contact with the portion of fluid boundary

where the boundary condition is imposed. Once p�ðnþ1=2Þ has been found, Eq. (5) is used to obtain the updated

velocity u
ðnþ2=3Þ
i .
(iv)
 The dynamic equations of each structure are solved using the method of average acceleration, as will be outlined in

Section 2.3, and the new state vector ½qi; _qi; €qi�
ðnþ1Þ of each cylinder is obtained.
1

cients for stiffly stable schemes

cient Oð1Þ Oð2Þ Oð3Þ

1 2 3

0 �1
2

�3
2

0 0 1
3

1 3
2

11
6

1 2 3

0 �1 �3

0 0 1
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(v)
Table

Num

mesh

Case

Singl

P=D

P=D

P=D

Also
The viscous correction is then found

g0u
ðnþ1Þ
i � u

ðnþ2=3Þ
i

Dt
¼

u
ðnþ1Þ
i;jj

Re
. (9)

The velocity boundary condition for Eq. (9) on the portion of the boundary corresponding to a moving cylinder is

u
ðnþ1Þ
i ¼ _qðnþ1Þi , (10)

where _qðnþ1Þi is the updated velocity vector of the cylinder in contact with the fluid boundary where the condition is

imposed.
(vi)
 The new velocity of the mesh is then calculated by solving

ð ~kðxiÞv̂
ðnþ1Þ
i;j Þ;j ¼ 0, (11)

where ~k denotes an arbitrarily defined function that allows for an indirect local control of the mesh velocity. The

boundary conditions for (11) are v̂ðnþ1Þ ¼ 0 on the external boundaries of the mesh, and

v̂
ðnþ1Þ
i ¼ _qðnþ1Þi , (12)

on flow mesh boundaries in contact with moving bodies.
(vii)
 At the end of each time step, the force vector on each moving body is calculated taking into account the pressure

distribution and viscous stresses:

F
ðnþ1Þ
k ¼

I
Gcyl

�p�ðnþ1=2Þdjk þ
1

Re
ðu
ðnþ1Þ
k;j þ u

ðnþ1Þ
j;k Þ

� �
nj ds, (13)

where nj is the unit vector normal to the cylinder boundary Gcyl. This will be needed in the next iteration when the

dynamic equations for the structures are found.
2.2. Computational domain

Hybrid meshes consisting of quadrilaterals and triangles are used. The number of triangular and quadrilateral

elements for each case is summarized in Table 2. For consistency among the different spacings considered, the outer

part of the mesh is kept the same in all examined cases. Each mesh is 24 diameters wide and 58 diameters long as seen in

Fig. 2 for the single cylinder. The center of the upstream cylinder is used as the origin of the coordinate system. An inner

mesh block ½�2:0; 7:5� � ½�4:0; 4:0� is substituted for each different spacing as seen in Fig. 3.

2.3. Structural model

The governing equations for the dynamic response of each body are

m� €q�i þ c� _q�i þ k�q� ¼ F�i , (14)

where q�i ¼ qi=D is the vector of displacement nondimensionalized by the cylinder diameter, and m� ¼ m=ðrD2Þ,

c� ¼ c=ðrDU1Þ, and k� ¼ k=ðrU2
1Þ are the nondimensional mass ratio, damping coefficient, and stiffness constant,

respectively. Time is nondimensionalized by D=U1 and the force as F�=ðrDU2
1Þ. All calculations that follow involve
2

ber of triangular (Ntri
EL) and quadrilateral (Nquad

EL ) elements, and total number of elements (NEL) for each hybrid computational

NEL Ntri
EL N

quad
EL

M tri Mquad

e cylinder 1824 618 1206 21 36

¼ 2:5 1748 722 1026 28 49

¼ 3:5 1816 790 1026 28 49

¼ 5:0 1966 940 1026 28 49

, total number of modes per triangular (M tri) and per quadrilateral element (Mquad).
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Fig. 2. Computational mesh for single cylinder.
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Fig. 3. Close-up zoom of computational meshes for: (a) tandem cylinders at spacing P=D ¼ 2:5; (b) tandem cylinders at spacing

P=D ¼ 3:5; (c) tandem cylinders at spacing P=D ¼ 5:0; (d) single cylinder.
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the nondimensional quantities and for brevity we will drop the asterisks in these quantities. The natural frequency of

such an oscillator in vacuum is

oNA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

m
�

c

2m

� �2r
. (15)
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Typically, k=mbðc=2mÞ2. Eq. (14) can be rewritten in terms of a nominal natural frequency, f N ¼ ð1=2pÞðk=mÞ1=2,

€qi þ 2zsoN _qi þ o2
Nqi ¼

Fi

m
. (16)

The forcing term is the hydrodynamic force acting on each cylinder.

Despite its linearity, Eq. (16) is complicated due to the dependence of the hydrodynamic force on the displacement

(q), the velocity ( _q) and the acceleration ( €q). Eq. (16) is solved numerically using the method of average acceleration, a

member of the Newmark family (Newmark, 1959). In its general form, the Newmark iteration is written as

€qnþ1 þ 2zsoN _q
nþ1 þ o2

N qnþ1 ¼ Fnþ1=m,

qnþ1 ¼ qn þ Dt _qn
i þ

Dt2

2
½ð1� 2bÞ €qn

i þ 2b €qnþ1
i �,

_qnþ1 ¼ _qn þ Dt½ð1� gÞ €qn þ g €qnþ1�. (17)

When integrating only for the structure with an a priori known F ðnþ1Þ this method is unconditionally stable for

2bXgX0:5. The method of average acceleration used here is obtained for b ¼ 0:25 and g ¼ 0:5.

2.4. Simulation parameters and initial conditions

A time step Dt ¼ 0:001 is used for all the tandem cases simulations, while for a single cylinder the time step used is

Dt ¼ 0:002. We performed several temporal and spatial resolution tests before we arrive at these discretization

parameters.

For each set of numerical simulations, the solution of the stationary tandem cylinders for the corresponding spacing

was used as initial condition. This consistent way of initializing the run for different reduced velocities leads to results

on the same branch of possible hysteretic effects.

A mass ratio m� ¼ 10 and a damping parameter zS ¼ 0:01 were used, while the natural frequency f N ¼ ð1=2pÞ
ðk=m�Þ1=2 was varied. In the present context the reduced velocity is defined VR ¼ U1=Df N . The reduced velocity (VR)

and the structural natural frequency f N , which are inversely proportional, are alternatively used throughout the text.
3. Vortex-induced vibrations of two tandem cylinders

3.1. Effect of spacing on the amplitude and force responses

The spacing between the two cylinders is found to affect the two-degree-of-freedom oscillations of the tandem

cylinders in a number of ways discussed in this section. The oscillations are predominantly in the transverse direction

for all examined spacings, as well as for the single cylinder, in the range of reduced velocities considered. The cylinder

trajectories for one of the lock-in cases, as well as a low reduced velocity VR are plotted in Fig. 4. For relatively low

values of VR the oscillation amplitude of the downstream cylinder is much higher than that of the upstream, both in the

in-line and transverse directions. The range of reduced velocities (VR) considered does not cover the fluid-elastic

excitation regime where in-line oscillations are in many cases dominating over transverse, as reported by Zdravkovich

(1985). The in-line response is generally higher on the downstream than the upstream cylinder for almost the whole

range of reduced velocities and cylinder spacings.

This is also seen in detail in Figs. 5 and 6, where we have plotted the variation of the maximum amplitude response in

the vertical (AY ) and horizontal (AX ) direction, respectively, with the reduced velocity (VR), parametrically over the

cylinder spacing ðP=DÞ. Each plot is horizontally divided in two plots. The left shows the response of the upstream

cylinder, while the right for the downstream. The result of a single oscillating cylinder with similar structural

characteristics is also included for comparison.

The response curve of the upstream cylinder shifts on the VR axis as the cylinder spacing changes. This is illustrated

better by Fig. 5(b) where the centerline of the synchronization curve is plotted. At any given amplitude up to the

maximum of the synchronization curve a constant amplitude horizontal line intersects the curve in two points defining a

reduced velocity interval. The mid-points of every such interval for amplitudes up to the maximum define the centerline

of the curve. The shift is qualitatively consistent with the shift in the shedding frequency of the corresponding stationary

system. Table 3 shows the values of the shedding frequency for the stationary system at the same Reynolds number

examined, Re ¼ 160. The shedding frequency of the stationary tandem cylinders is minimum near the critical spacing

[see also Papaioannou et al. (2006)]. As can be seen in the left side of Fig. 5, the orders of both the increasing part of the
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response curves up to the peak value, as well as the centerline, are consistent with the order of the corresponding

stationary shedding frequency (f ��o ).

As spacing is reduced, the response curve width, in terms of reduced velocities (VR), of the upstream cylinder

increases. This is more clearly illustrated in the left plot of Fig. 7. In this figure, the width of the synchronization curve is

plotted for increasing terminal oscillation amplitudes. This finding is very likely related to the widening of the

synchronization region observed in the forced cylinder oscillation experimental results of Mahir and Rockwell (1996).

They compared the lock-in region between spacings P=D ¼ 2:5 and 5.0 for forced oscillations and found that the width

of the lock-on region increases. It should be noted, however, that the width increase on the upstream cylinder due to the

presence of the downstream is less significant than other factors such as a change in mass ratio or damping parameter.

As explained in Khalak and Williamson (1999), the width of the synchronization region for a single cylinder increases

with reducing mass ration m� and mass-damping parameter m�z. For the downstream cylinder the presence of the

upstream has a more considerable effect.

The maximum, over the examined VR range, transverse oscillation amplitude of the downstream cylinder, is higher

for the cases P=D ¼ 2:5 and 3.5 than for the case P=D ¼ 5:0. However, for increasing reduced velocities the larger

spacing ðP=D ¼ 5:0Þ case exhibits higher oscillation amplitudes both in the transverse and in-line directions.

The in-line response of the downstream cylinder presents at least two peaks in the range of reduced velocities

examined. The first peak corresponds to the VR of maximum in-line and transverse oscillations of the upstream

cylinder, and it is therefore related to the vortex emanating from it. The second is at a higher VR, coinciding with the

maximum transverse oscillations of the downstream cylinder (VR ¼ 6:67), and can be related to the vortex shedding of

the downstream cylinder under the action of the oncoming upstream cylinder wake. Two peaks are also present in the

C0D of the downstream cylinder.

Similarly, Figs. 8, 9 and 10 show the variation of the mean drag coefficient (CD), as well as the root-mean-square

(rms) of the drag and lift coefficients (C0D, C0L), respectively. The figures are outlined as described in Figs. 5 and 6. The

constant horizontal lines indicate the values of each cylinder at the stationary system for each spacing.
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When the reduced velocity (VR) decreases away from the synchronization region the drag coefficient of both

cylinders and for all examined spacings (P=D) resumes the value that corresponds to the stationary system. As shown in

Figs. 5 and 6 the responses for VRo3:5 are very small. Thus, the flow topology at small reduced velocities resembles

that of the stationary cylinders, as seen in Fig. 11 in comparison with Fig. 1, resulting in similar forces.

For VR higher than those corresponding to vortex-induced synchronization, the CD of the upstream cylinder

is approximately the same for all three cylinder spacings examined; the same is true for the C0L. This is observed

because the oscillations corresponding to those reduced velocities are still large enough for all examined spacings,

to allow vortex shedding in the gap region, as seen in Figs. 12 and 13. For stationary tandem cylinders we know that

after vortex shedding in the gap region has taken place, the effect of the downstream cylinder on the upstream is

vanishing.

The rms of the forces follow the corresponding variations in the response amplitude. But they also attain a common

value when the VR is large enough that the response on the upstream cylinder is very small for all spacings. Similarly to

the single cylinder case, the mean drag coefficient of the upstream cylinder reaches a maximum at lock-in.
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Table 3

Shedding frequencies of stationary tandem cylinders at Re ¼ 160

Case f �o Case f ��o

Single stand-alone 0.188 Tandem P=D ¼ 2:5 0.128

Tandem P=D ¼ 3:5 0.124

Tandem P=D ¼ 5:0 0.176
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The force and amplitude responses of the upstream cylinder in the P=D ¼ 5:0 case are very close to that of

the single cylinder. The effect of the downstream cylinder oscillation on the upstream for this spacing is relatively

small.
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3.2. Spectral analysis of responses

Spectral analysis was conducted on the time-histories of the displacements and forces, in both the horizontal and

vertical directions after elimination of transient response. Prominent peaks selection for each spacing and reduced

velocity yielded the summary plot of Fig. 14 for the transverse displacement.

In Fig. 14, there are three plots corresponding to the different spacings P=D ¼ 2:5, 3.5 and 5.0. Each plot contains the

spectral peaks of the upstream and downstream cylinder for the corresponding case as well as those of the single
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cylinder case. To help explain the peaks, diagonal lines corresponding to the shedding frequencies of the corresponding

stationary tandem (f ��o ) and single cylinder (f �o) are plotted. Constant horizontal lines with unit ordinate indicate the

natural shedding frequency of the structure f N . Before discussing and interpreting the spectral peaks, it should be noted

that the error on the frequency obtained by the fast Fourier transform is between 0.002 and 0.008 depending on the

length of the available. There are three significant frequencies in the spectra. The natural frequency of the structure is

f N . The shedding frequency of the stationary tandem system is f ��o , which depends on the spacing. And the shedding

frequency of a single stationary cylinder f �o at the given Reynolds number.

For small values of the reduced velocity VR (stiff spring), the prominent frequency of response is that of the

corresponding stationary system (f ��o ). The oscillations exhibited by the cylinders are very small and the flow topology

resembles that of the stationary case, as seen in Fig. 11, yielding vortex shedding at the corresponding frequency.

Spectral peaks at the natural frequency of the structure f N appear occasionally in the smaller spacing examined

(P=D ¼ 2:5) and at the upstream cylinder. This is not in the lock-in range, and other spectral peaks at characteristic

frequencies of the system should not be unexpected.

At the synchronization (lock-in) range the spectral peaks follow the horizontal line. The vortex shedding is tuned at

the natural frequency of the cylinders f N . For the horizontal force and displacement the tuning occurs at twice the

natural frequency of the cylinders 2f N . The widening in the synchronization range for the case P=D ¼ 2:5 is also

manifested here. There is wider range of reduced velocities VR for which the peaks lie on the horizontal line

corresponding to the natural frequency.

For reduced velocities higher than the synchronization range (soft spring) the cylinders respond at a frequency

between the natural shedding frequency of the stationary system with the corresponding spacing (f ��o ) and the natural

shedding frequency of the single cylinder (f �o). For the case P=D ¼ 2:5 the response peaks of the vertical displacement lie

very close to the diagonal corresponding to f ��o . The same is true for the case P=D ¼ 5:0 but for that spacing there are

prominent peaks on the horizontal unit ordinate corresponding to the natural frequency of the cylinders f N . The

situation is somewhat different in the case P=D ¼ 3:5 where the peaks lie away from the f ��o diagonal and closer, but not

exactly on, the f �o diagonal. The case P=D ¼ 3:5 is just below the critical spacing for vortex shedding in the gap region.

In fact, it is within the region where a known hysteresis effect occurs. Due to this hysteresis effect in this spacing even

when the cylinders are stationary, vortex shedding in the gap region can be stably sustained once it is initiated. One of

the ways to initiate such condition is the perturbation of the cylinders. Another way to initiate shedding in the gap

region of the stationary system at P=D ¼ 3:5 is by reducing to that spacing continuously starting from higher spacings,

or start from higher Reynolds numbers and reduce. Small disturbances in the flow, like those caused by slight cylinder

oscillation, cause vortex shedding in the gap region. At reduced velocities VR47 the downstream cylinder exhibits
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considerably higher oscillations than the upstream and the flow exhibits a pair of vortices in the gap region yielding

responses closer to the f �o diagonal.

The spectral peaks of the single cylinder are repeated in each plot and are characterized by peaks on the f �o diagonal,

followed by peaks on the horizontal corresponding to f N during lock-in and then again peaks on the f �o diagonal.

3.3. Hydrodynamic work

The total work of the hydrodynamic force (W T ) on each cylinder undergoing two-degree-of-freedom oscillations is

written as the line integral of the force over the cylinder trajectory and can be decomposed into the work in the in-line

(x-) and transverse (y-) directions,I
Fi dsi ¼

1

N

Z xððkþNÞTÞ

xðkTÞ

Fx dxþ
1

N

Z yððkþNÞTÞ

yðkTÞ

Fy dy. (18)

The period entering Eq. (18) is based on the transverse oscillations. For more robust calculation an average over several

(N) periods is obtained.
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In cases where more than one frequency peaks are present, trajectories do not form closed loops, averaging over

several integer multiples of the prominent frequency produces an approximate average of the work input on the

cylinder. In Fig. 15 the total hydrodynamic work on each cylinder is compared among different spacings. The work on a

single cylinder is also presented for comparison.

The findings are consistent with the conclusions drawn by observation of the response amplitudes. The total

hydrodynamic work has a higher maximum in the spacings corresponding to reattachment (P=D ¼ 2:5 and 3.5)

compared to the case P=D ¼ 5:0 or the single cylinder. Those spacings also exhibit wider range of reduced velocities VR

for which the hydrodynamic force inputs work on the cylinder. The shifting of the curves on the VR axis is also

consistent with the earlier discussions on the amplitude responses.

The results presented in Fig. 15, based on Eq. (18), contain the contributions of all frequency components of the force

and amplitude spectrum. Substituting the force and displacement by their Fourier series representations, we have

W ¼ Re

Z t2

t1

XN�1
k¼0

Fke
iðoktþfkÞ d

XN�1
j¼0

xje
ioj t

 !( )
, (19)
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from which we obtain

W ¼ Re
XN�1
k¼0

XN�1
j¼0

Fkojxj

Z t2

t1

ei ðokþoj Þtþðfkþp=2Þ½ � dt

( )
. (20)

If the force and amplitude responses are monochromatic at one and the same frequency o, corresponding to the kth

mode, the work done by the fluid over a period of oscillation can be obtained from Eq. (20) by keeping only the related

term, and integrating over a period corresponding to that particular frequency

W ¼ Fkxkp sinðfkÞ. (21)

Fig. 16 shows the phase angle between the lift force and the vertical displacement, and how it varies with the reduced

velocity for the upstream and downstream cylinders for each of the spacings considered. The phase angle was calculated

as the difference between the Fourier coefficient phases of the transverse force and displacement, obtained from the

corresponding time history signals. The difference was calculated at the Fourier coefficients corresponding to the

prominent response frequencies. This is why in some cases there is more than one point at a given reduced velocity.

When there are more than one significant frequencies in the spectra, each point indicates the phase angle of the Fourier

mode corresponding to that frequency. The points in this case have different size according to the magnitude of the

mode. A bigger point is used for higher amplitude Fourier coefficients.
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For small values of VR, corresponding to high cylinder natural frequencies f N (stiff spring), the phase angle is close to

zero. The cylinder moves at the direction of the force but is not driven by it and no work is done. For high values of VR,

corresponding to soft spring and small f N the phase angle is 1801, i.e., the cylinder’s deflection is in the opposite

direction than that of the force. The net work input over a period is also zero.

There is a range of reduced velocities that the transition from 01 to 1801 occurs, and the phase angle obtains

intermediate values that yield a net work input with more work done when the phase is about 901. Work is produced by

the component of lift in phase with the vertical velocity. That leads to another important quantity, the ‘lift in phase with

velocity’. To actually perform the integration, a parametrization in time and change of variable takes place,I
F ds ¼

Z ðkþ1ÞT
kT

F
ds

dt

� �
|fflffl{zfflffl}
velocity

dt. (22)
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No hysteresis effect was observed in the phase angle plots. The hysteresis effect occurring on the single cylinder, see

Williamson and Roshko (1988), as well as Carberry et al. (2001), is associated with the occurrence of 2P or 2S vortex

structures in the wake.

A more detailed discussion on the absence of 2P shedding in the present calculation follows in Section 3.4.

3.4. Flow patterns

From the literature on the vortex-induced vibrations of a single cylinder, see for example Khalak and Williamson

(1999), it is expected that the response curve for relatively low mass ratios Oð1Þ–Oð10Þ involves three branches. Each of

the branches is associated with different vortex patterns depending also on m�z, as follows.
(i)
 An initial branch is the first part of the response curve as VR increases. This branch is associated with a 2S pattern

and an almost zero phase angle between lift and transverse response.
(ii)
 An upper branch exhibiting high amplitude oscillations and associated with a 2P shedding pattern. The phase

difference is also around zero.
(iii)
 A lower branch where the phase angle between lift force and transverse displacement has become 1801. Part of this

regime is associated with 2P shedding and part of it with aperiodic wake, or ‘no observed pattern’ as termed in

Williamson and Roshko (1988).
An important aspect of the response is the hysteretic effects between each part of the curve, as they overlap for a range

of VR. In our two-degree-of-freedom low Reynolds number ðRe ¼ 160Þ simulations we did not observe 2P structures in

the flow behind a single cylinder that are associated with those hysteresis effects. As seen in the instantaneous vorticity

fields in Fig. 17, for Re ¼ 160 and mass ratios m� ¼ 3:0 and 10.0 at lock-in, there is a wide wake with closely spaced

vortices but it is not a 2P wake. At Re ¼ 500 and m� ¼ 3:0 an asymmetric Pþ S wake structure is observed, as first

reported in Papaioannou (2003). The Pþ S mode in the two-degree-of-freedom oscillations of a single cylinder was

independently observed in the numerical simulations of Singh and Mittal (2005) at Re ¼ 325. A Pþ S structure is

observed at higher Reynolds number. However, the validity of the two-dimensional (2-D) simulations is questionable as

the Reynolds number increases, although at lock-in the 2-D approximation is expected to be close to reality.

There are several reasons for the absence of the upper branch and 2P shedding in our results. Firstly, the relatively

high m�z ¼ 0:1 leading to a Feng-type response without upper branch and a narrower in terms of VR range lower

branch as explained in Khalak and Williamson (1999). Secondly, the 2-D low Reynolds number simulations as also

noted in Blackburn et al. (2000). Another likely reason that hysteretic phenomena are not reported in our results is the

consistent initial conditions used for each reduced velocity calculation. Additionally for the Reynolds numbers
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examined the hysteresis loops are very narrow as shown in Singh and Mittal (2005), so they would not be captured by

our VR resolution. The two- versus one-degree-of-freedom oscillations is disqualified as a reason, by comparison of

one- and two-degree-of-freedom results for the present parameters and Reynolds number. A more detailed discussion

on this topic can be found in Papaioannou (2003).

The flow patterns of the tandem cylinders are more complex due to the higher vorticity production and the

interaction of the two wakes. For VR ¼ 4:0 the response is on the initial branch for all tandem spacings as well as the

single cylinder. As seen in Fig. 11, the flow patterns are similar to Fig. 1 and a 2S like pattern is observed in the wake.

Case P=D ¼ 5:0 exhibits stronger and horizontally closer spaced vortices compared to the stationary system. At

VR ¼ 5:555 the upstream cylinder is at lock-in for all spacings. The high amplitude oscillations result in wide wakes

with closely spaced vortices as seen in Fig. 12. However, none of those could be classified as 2P wake. Merging of equal

sign vortices takes place on the wake due to their increased strength and short horizontal distance. At VR ¼ 8:333 the

small oscillations of the upstream cylinder and larger oscillations of the downstream cylinder allow shedding of vortices

in the gap region. In the reattachment regime cases P=D ¼ 2:5 and 3.5 the downstream cylinder seems to synchronize its

shedding resulting in periodic 2S looking wake. The difference here with the smaller VR cases is that the phase angle

between lift force and y-response is 1801. For P=D ¼ 5:0 a complex and not periodic wake results from the combined

wakes of the two cylinders.
4. Summary and conclusions

The effect of spacing in the two-degree-of-freedom vortex-induced vibrations of two cylinders in tandem arrangement

was studied. The numerical method employed is based on high-order spectral element expansions and a stiffly stable

time integration. The motion of the fluid domain boundaries was accommodated by an arbitrary Lagrangian–Eulerian

(ALE) scheme.
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Three spacings P=D ¼ 2:5, 3.5 and 5.0 were considered, each corresponding to a different flow regime when the

cylinders are fixed. For the Reynolds number examined ðRe ¼ 160Þ, the spacings P=D ¼ 2:5 and 3.5 are in

the reattachment regime, while the P=D ¼ 5:0 is in the binary-vortex regime. The spacing P=D ¼ 3:5 is just before the

critical spacing. In fact, due to a hysteresis effect, both reattachment and binary-vortex shedding are possible states for

this spacing at the examined Reynolds number. The cylinder spacing is found to have the following effects on the

response curve of the upstream cylinder. The response curve becomes wider as the cylinders are brought closer to each

other, i.e., there is a wider range of reduced velocities (VR) for which the upstream cylinder exhibits high amplitude

oscillations. There is also a shift of the response curve toward higher reduced velocities. The shift is explained in terms

of the change in the natural shedding frequency (f ��o ) for different spacings of the fixed cylinders’ system. As the spacing

increases into the binary-vortex regime (P=D ¼ 5:0 case), the upstream cylinder is almost unaffected by the presence

and oscillation of the downstream. Its response is very close to the single cylinder both in terms of size and shift along

the VR axis compared to the other spacings. The response curve of the downstream cylinder is shifted toward higher

values of the reduced velocity compared to the upstream for all examined spacings. This shift is attributed to the

shielding effect.

The effect of spacing is also manifesting itself in the spectra of the responses. All the peaks in the response spectra are

identified and interpreted in terms of three prominent frequencies, their super-harmonics and differences among them.

The first is the natural frequency of the cylinder f N . The second is the shedding frequency of the corresponding

stationary tandem system f ��o . Finally, the third significant frequency is the shedding frequency of the single stationary

cylinder f �o. For all spacings, at lock-in, the significant frequency is f N as expected. At non-lock-in frequencies, however,

the effect of spacing is masked into response peaks at the frequency f ��o . For spacings P=D ¼ 2:5 and 5.0, at every VR

not corresponding to lock-in, there is at least one peak at the corresponding f ��o and possibly additional ones at f N . For

the case P=D ¼ 3:5 and VR higher than lock-in there is deviation from that behavior, with the response frequencies

higher than f ��o and closer toward f �o. This is attributed to the special, hysteretic with respect to spacing, behavior of the

corresponding stationary system where both reattachment and binary-vortex regimes can be realized, yielding of course

different values of f ��o for this case.

The hysteresis effect, with respect to the reduced velocity, and ‘upper branch’ known to exist for the single oscillating

cylinder was not observed in this study. This is attributed to the mass-damping parameter, Reynolds number and 2-D

calculations.
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Appendix A. Verification of results

Given the number of parameters that play a role in the problem, (m�, z, VR, Re, P/D) a one-to-one comparison with

experimental or other numerical results is not always available. Another difficulty in regard to quantitative comparison

with experimental results is that for most experimental techniques the Reynolds number increases along with the

reduced velocity. While in numerical results reduced velocity changes by changing only the natural frequency of the

cylinders f N . In lack of a direct comparison for the chosen parameters of the two-degree-of-freedom vortex-induced

oscillations of tandem cylinders, the verification process is divided in several sub-stages. First, we verify the single

stationary cylinder case, and then the stationary tandem cylinders and also a single cylinder in two-degree-of-freedom

flow-induced oscillations. Finally, we provide a comparison of the results for a single case run on two completely

different computational meshes to prove the used meshes provide adequate accuracy.
A.1. Single stationary cylinder

The calculated nondimensional shedding frequency of a single cylinder at Re ¼ 100, 160 and 200 is compared in

Table A1 with the corresponding experimentally obtained by Williamson (1988). The results agree within less than 4%

in all three Reynolds numbers examined. It should be noted here that for higher Reynolds numbers three-

dimensionalities become increasingly important as discussed in detail in Papaioannou et al. (2006).
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Table A1

Comparison of the calculated shedding frequency (f �o) of a single stationary cylinder with experimental results

Re 100 160 200

Present work 0.170 0.188 0.200

Williamson (1988) 0.164 0.186 0.196

Table A2

Comparison of drag coefficient and shedding frequency of stationary tandem cylinders among various two-dimensional numerical

studies

Work Re P=D CD1 CD2 St

Present work (2-D) 100 3.0 1.16 0.05 0.116

Sharman et al. (2005) 100 3.0 1.111 �0.02 0.110

Present work (2-D) 100 3.5 1.16 0.05 0.116

Sharman et al. (2005) 100 3.5 1.106 0.03 0.110

Present work (2-D) 100 4.0 1.31 0.75 0.152

Sharman et al. (2005) 100 4.0 1.274 0.705 0.148

Present work (2-D) 200 3.0 1.02 �0.12 0.128

Meneghini et al. (2001) 200 3.0 1.00 �0.08 0.125

Present work (2-D) 200 3.5 1.27 0.40 0.174

Slaouti and Stansby (1992) 200 3.5 0.85 �0.18 0.12

CD1: upstream cylinder, CD2: downstream cylinder.
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A.2. Stationary tandem cylinders

Table A2 compares stationary tandem cylinder results presently obtained, with corresponding 2-D numerical results

in the literature. The choice of literature data was made based on availability of results at the corresponding spacing and

Reynolds number. The results match exactly in up to two significant digits in most quantities, with the only exception

the results of Slaouti and Stansby (1992) who used the Lagrangian in nature random vortex method. The discrepancy

may be due to the spacing of the comparison which is just about the critical spacing for that Reynolds number where

there are hysteretic effects and big jumps in the values of forces. Sharman et al. (2005) applied a collocated unstructured

computational fluid dynamics (CUCFD) method. The domain was divided by cell-centered unstructured mesh into

triangular control volumes. The velocity and pressure were stored at the cell centroids (collocated variable

arrangement). The momentum and the pressure-correction equations were then solved iteratively using the SIMPLE

algorithm. In Meneghini et al. (2001) a fractional step method was used. The calculations were carried out on three-

node unstructured meshes by means of a Poisson’s equation for the pressure and a Taylor–Galerkin formulation for the

intermediate velocity.

A.3. Vortex-induced vibrations of a single cylinder

In Fig. A1 we show a comparison between the presently obtained results for a single cylinder in two-degree-of-

freedom vortex-induced oscillations, with those of Singh and Mittal (2005) who employed a numerical method based on

space–time finite elements. Their data were obtained for somewhat different parameters. For the drag coefficient the

Reynolds number was 100 and there was no damping (z ¼ 0). On the other hand, the mass ratio m� ¼ 10 was the same,

and two-degree-of-freedom oscillations were numerically studied. The zero damping parameter leads to higher

oscillations and drag coefficients compared to ours. We obtained two extra points at z ¼ 0:0. As expected, one of these

points, VR ¼ 5:88, in the synchronization range exhibits higher drag than the corresponding at z ¼ 0:01, and it is closer

to the results of Singh and Mittal (2005).
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Fig. A1. Comparison of drag coefficient of single oscillating cylinder. &, Present study (m� ¼ 10:0, z ¼ 0:01, Re ¼ 160); �, present

study (m� ¼ 10:0, z ¼ 0:00, Re ¼ 160); 	, Singh and Mittal (2005) (m� ¼ 10:0, z ¼ 0:00, Re ¼ 100).

Table A3

Comparison of response and force statistics between two different meshes for tandem cylinders P=D ¼ 3:5 at Re ¼ 160 and reduced

velocity VR ¼ 6:67

Mesh Order Mesh area NElem NTri NQuad

A 5 ½�10:5; 42:5� � ½�12; 12� 3526 3526 0

B 7 ½�12:5; 45:5� � ½�12; 12� 1816 790 1026

Cylinder x-Amplitude y-Amplitude CD C0L

A Upstream 0.0042 0.48 1.34 0.12

B Upstream 0.0046 0.48 1.33 0.11

A Downstream 0.0225 1.64 1.49 0.54

B Downstream 0.0222 1.72 1.54 0.45
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A.4. Mesh quality verification

The results presented so far are based on the computational meshes presented in Section 2.2 and Table 2. The spectral

element methodology allowed us to reach adequate resolution by increasing the polynomial order of each element

without having to change the number of elements, a process known as p-refinement. More detailed results on these

studies for each of the meshes can be found in Papaioannou (2003). To re-confirm the adequacy of the selected

computational mesh, one case was recomputed with a completely different mesh consisting of only triangular elements

with fifth-order polynomial bases, or equivalently ðpþ 1Þp=2 ¼ 15 modes per element. Comparisons of the two meshes

and the obtained results are presented in Table A3. It should be noted that the total degrees of freedom in the triangular

mesh is about 35% less than those of the hybrid mesh actually used in the study. The results of the upstream cylinder

are almost identical. For the downstream cylinder oscillation amplitudes and drag force are all below 5% accuracy, but

the C0L is up to 20% different.
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